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Fluid diffusion through a porous solid: Nonequilibrium molecular-dynamics simulation
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Fluid mass transport through a porous solid is studied by carrying out nonequilibrium molecular-
dynamics simulations for a simple model. It is found that through the porous solid, the steady state den-
sity distribution is not linear, even in the case of a quite small current. Hence, Fick’s law cannot be ap-
plied simply. Nevertheless, the density distribution is piecewise linear. An adequate interpretation can
be made by applying Fick’s law piecewise with different diffusion coefficients in different regions. Thus a
distinct diffusion coefficient can be unambiguously defined for the interfacial region, which can be seven
times smaller than the diffusion coefficient in the interior of the porous solid. So the surface crossing is a
limiting step in the overall process of mass transport through a porous solid.

PACS number(s): 47.55.Mh, 61.20.Ja

Fluid diffusion in porous media plays an important role
in a variety of processes, e.g., heterogeneous catalysis,
membrane separation, etc. A considerable amount of
works have been devoted to this subject (see Ref. [1], for
example). For experimental study, many techniques can
be used [1]. They are usually classified into two main
categories: one called microscopic methods and the oth-
er macroscopic ones. For the microscopic methods,
NMR is a typical example. By such methods, the mean
square displacement is determined as a function of time,
and then the diffusion coefficient can be obtained with the
help of the Einstein formula [2]. In a macroscopic mea-
surement, a density gradient is created. Fick’s law allows
us to determine the diffusion coefficient from the
gradient-current relation. The results from both macro-
scopic and microscopic methods from which an experi-
mental puzzle has emerged are abundant [1,3]. In some
cases, the diffusion coefficients measured by the two
methods are very different under apparently the same
conditions.

In the past years, the molecular-dynamics (MD) simu-
lation method is also applied to study fluid diffusion in
porous solids [4—13]. In general, there is good agreement
between MD results and those obtained from microscopic
experimental methods. Although this confirms the results
of microscopic measurements, the puzzle remains un-
solved. Hence, some fundamental questions arise natu-
rally. Should one discredit the macroscopic methods?
Have the comparisons been made properly between the
two methods? These are the questions we would like to
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examine in this work.

The MD simulations [4—13] carried out until now have
been exclusively designed to simulate the situation under
which microscopic measurements are made, i.e., aiming
at the determination of the mean square displacement in
the interior of a porous solid. However, the situation in a
macroscopic experiment is somewhat different. In this
case, a surface crossing process is necessarily involved.
In order to enter into the porous solid, fluid molecules
have to cross first the interface region between the porous
solid and the bulk fluid phase. During this surface cross-
ing, a fluid molecule undergoes a change of physically
distinct media. Therefore, one can reasonably conceive
that the transport property through the interfacial zone
might be different from either the bulk fluid or that inside
the porous solid. The results to be presented in the fol-
lowing show that this is indeed the case. We will reveal
that there exists a well defined interfacial transport prop-
erty, and failure to take this fact into account can give a
misleading interpretation of the results of macroscopic
measurements.

For our purpose, nonequilibrium molecular-dynamics
(NEMD) simulations are carried out. To our knowledge,
no such simulation to study any transport processes
through porous solids has been done. To reduce compu-
tational efforts, we will restrict ourselves to a two-
dimensional model. It is well known [14] that due to the
long time tail of the velocity autocorrelation function, the
thermodynamic limit of the diffusion coefficient does not
exist for two-dimensional systems. But it will be shown
that for our goal here, we need not make any explicit
evaluation of the diffusion coefficient. The porous solid is
modeled by a regular lattice with hard disks fixed on it
(see Fig. 1). The fluid is modeled also by hard disks, but
they can move through the space unoccupied by the solid
particles. Although this is a highly idealized model, the
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FIG. 1. Schematic presentation of the model.

results in the following will show that it is already cap-
able of giving us some valuable insight into the problem
we are interested in here. The fluid distributions at equi-
librium of this model have been previously studied by
Dong and Bigot [15].

In order to mimic the experimental conditions of some
macroscopic measurements, e.g., the zeolite membrane
permeability measurement, one needs to establish a non-
equilibrium steady state and study the gradient-current
relation. The nonequilibrium molecular-dynamics simula-
tion method is a suitable means for such investigations.
There exist a variety of NEMD methods for different
transport processes [16]. We adopt a method devised by
Erpenbeck, and Wood [17] which is designed originally
to study self-diffusion in a pure fluid. An elegant scheme
is prescribed in this method for introducing a colored
species and a gradient of the colored species is set up
gradually and maintained when the steady state is
reached. The reader is referred to Ref. [17] for a detailed
description of the technique.

Our simulations are made under the conditions given
in Table I. The parameters are defined as follows: the
fluid particle diameter o is chosen as the length unit, the
central simulation box size is given by L, and L, d is the
unit cell size (see Fig. 1), o is the solid particle diameter,
n. and n., specify the number of unit cells in the x and y
directions, N is the number of fluid particles, and p the
total fluid density. In Table I, we also give the number of
configurations N 4, from which statistical calculations are
made.

In the NEMD method of Holian, Erpenbeck, and
Wood, the particle’s color is changed with a probability p
when the crossing of simulation box boundaries normal

So we chose p equal to 1 in all our calculations. Even
with this value of p, the current is so small that the com-
putational error in this quantity is quite large. However,
the determination of the steady state density distribution
of the colored species will be sufficient for our purpose
here. So this does not really pose a serious problem.

The steady state density distribution of the colored
species is calculated in the following way:

pe(x)=(N,(x,x +Ax)) /(AxL,) , (1)

where (N_.(x,x +Ax)) is the average number of colored
particles falling in a slice between x and x +Ax. For the
results presented below, the average is taken over several
tens of thousands of configurations (see Table I) after the
steady state has been established. In Eq. (1), the magni-
tude Ax determines the length scale over which structur-
al information can be obtained from p.(x). With a finer
resolution, the density profile yields greater details of the
inhomogeneous fluid distribution in the porous solid.
Very detailed structural information at thermodynamic
equilibrium can be found in Ref. [15].

In Fig. 2(a) we present the steady state density profile
p.(x), determined by Ax =0.50 and under the conditions
specified in the first line of Table I. At this length scale,
the inhomogeneity induced by the porous solid still mani-
fests itself clearly. Hence at this length scale, Fick’s mac-
roscopic law is not applicable. To interpret the result by
using Fick’s law, some coarse graining is needed. Here,
we would like to emphasize that the density oscillation in
Fig. 2(a) is due to the crystal structure of the solid. Even
at this resolution (Ax =0.5¢ ), the fine oscillatory struc-
ture due to the excluded volume effect of the hard disk
fluid is already averaged out. Figure 2(b) shows the result
of p.(x) determined under the same conditions as in Fig.
2(a) but with Ax =2.0c0. Now, the microscopic structur-
al details induced by solid crystal are also smeared out.
The most important thing revealed in Fig. 2(b) is that
p.(x) is not linear throughout but is only piecewise
linear. The important consequence of this fact is that one
cannot simply apply Fick’s-law with a single diffusion
coefficient all over. An adequate treatment is to apply
Fick’s law in the zones S;S, and S,8; with two different
diffusion coefficients, D; for S5, and D, for S,S; [see
Fig. 2(b)]. More precisely, the coarse grained density dis-
tribution can be accounted for in the following phenome-
nological way:

to the current takes place. This probability determines J=—D dp.(x) _

the magnitude of the colored species current; a larger p o 0 ax Ly/2<x <83, §;<x <L,/2

leading to a larger current. As pointed out in Ref. [17], p dp,(x)

should be given values near 1 to obtain a reasonable accu- J=—D,——, §,<x <8,

racy in the determination of the current. In the problem dx

we are considering, the presence of a porous solid mem- =—_D dp.(x) S.<x <S

brane produces a quite large resistance to mass transport. 2odax 73 2

TABLE I. Computational parameters.

No. L./o L,/o d/o o,/0 Mex ey N pro? 10*N ¢
I 40.0 16.0 4.0 2.0 6 4 336 0.5951 2
1I 64.0 16.0 4.0 2.5 6 4 550 0.5371 6
II1 64.0 16.0 4.0 2.5 6 4 275 0.2685 8
v 112.0 28.0 7.0 5.5 6 4 350 0.1364 8
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FIG. 2. (a) Steady state density profile of colored species with
Ax=0.50 (simulation I). (b) Steady state density profile of
colored species with Ax =2.00 (simulation I). The two vertical
dot-dash lines delimit the surfaces of the porous solid.

where D and D, are defined as before, D, is the diffusion
coefficient of the bulk fluid outside the porous solid, and J
is the current, which is constant through the system for a
steady state. The solution of these equations with some
boundary condition, e.g., p.(x =L, /2), provides a very
simple model for describing the coarse grained density.
From Fig. 2(b), it is obvious that D; <D, holds. This re-
veals that there exists a distinct surface resistance to mass
transfer that is larger than that inside the porous solid.
Here, we define the resistance to mass transfer as a quan-
tity inversely proportional to the diffusion coefficient, i.e.,
1/D. Quantitatively, D, /D, can be determined from the
ratio of the slopes of S;S, and S,S; since the current is
constant throughout for a steady state. For the results
given in Fig. 2(b), D, /D, is equal roughly to 4.

Another simulation is carried out under the conditions
given in the second line of Table I. Here, the solid parti-
cle diameter is increased to raise the resistance to mass
transfer of the porous solid since the channel size de-
creases. In Fig. 3, p.(x) determined with Ax =2.00 is
presented. In this case, the distinction between surface
resistance and the resistance inside the solid is even more
marked. D,/D, is now equal roughly to 7. The results
given in both Figs. 2(b) and 3 show that the size of the
zone over which D, is defined is of the order of one solid
layer. It is remarkable that in such a small region there
exists a distinct and well defined surface resistance, i.e.,
p.(x) is linear between S,; and S, and its gradient has
discontinuities at S| and S,.
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FIG. 3. Steady state density profile of colored species with
Ax'=2.00 (simulation II). The two vertical dot-dash lines de-
limit the surfaces of the porous solid.

As described in the Introduction, our main goal here is
to try to understand the experimental puzzle. Since the
experimental measurements are usually made at low den-
sities in the gas phase, it is important to make certain
that the abrupt density drop in the interface zone found
at high densities will show up also at low densities.
Hence, two simulations at low densities are also carried
out. Simulation III (see Table I) is made under essentially
the same conditions as those of simulation II but with a
density that is half that for simulation II. The result of
simulation III is presented in Fig. 4. Another simulation
at an even lower density, which is reduced again by a fac-
tor of 2 compared to simulation III, is also carried out.
Moreover , the size ratio of the fluid particle to the solid
particle is reduced by more than two times (see simula-
tion IV in Table I). The result of simulation IV is given in
Fig. 5. From Figs. 4 and 5, we see that the abrupt density
drop in the interface region persists at low densities and
for smaller size ratio between fluid and solid particles.
Therefore, the decreased permeability across the interface
is a general feature of the fluid mass transport through a
porous medium.

Now, let us see the implication of the above results on
the interpretation of experimental results. In a micro-
scopic measurement, the determined diffusion coefficient
is essentially D, since the detected trajectories and thus
the mean square displacement are essentially those of the
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FIG. 4. Steady state density profile of colored species with
Ax =2.00 (simulation III). The two vertical dot-dash lines de-
limit the surfaces of the porous solid.
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FIG. 5. Steady state density profile of colored species with
Ax =3.50 (simulation IV). The two vertical dot-dash lines de-
limit the surfaces of the porous solid.

fluid particles inside the porous solid. However, in mac-
roscopic measurements, both D and D, are involved be-
cause the surface crossing takes place commonly in all
the macroscopic methods. So the effective diffusion
coefficient measured by a macroscopic method must be
smaller than that obtained from a microscopic measure-
ment because the surface crossing has a much smaller
diffusion coefficient and it is thus the limiting step in this
case. This is indeed what is found experimentally [1,3].
More concretely, let us examine the membrane permea-
bility measurement, which is an experiment our simula-
tion mimics closely. Usually, the results of such a mea-
surement are interpreted as follows. It is supposed that
Fick’s law can be simply applied throughout the porous
solid, i.e., the density distribution is supposed to be linear
between S; and S; [see Figs. 2(b), 3, 4, and 5]. In fact,
the resistance of the membrane to mass transfer causes an

abrupt concentration drop in the interfacial zone even in
the case of a quite small current. Therefore, a proper
treatment of the overall process must be worked out
piecewise. Taking no account of this fact will inevitably
give misleading results. For example, if the density dis-
tribution is supposed to be linear between S; and S; in
Fig. 4, one will find a diffusion coefficient about two times
smaller than D,. Quantitatively, this is of course still far
from accounting for the discrepancy between the results
found by microscopic and macroscopic methods [1,3]. It
is noted that the model studied here is an extremely ideal-
ized one. For this model, the only way to increase the
mass transfer resistance is to increase the solid particle
size. With more elaborate models that incorporate some
specific surface resistances, one can expect to obtain
larger difference between D, and D,. Although what we
find here does not seem to be the unique cause for the ex-
perimental puzzle, it is certainly one among the others.
Only when the distinct resistance is properly taken into
account can the overall mass transport through porous
solids be interpreted correctly by using Fick’s law.

Before closing, we would like to draw particular atten-
tion to this subject from experimentalists in this field. We
believe it would be a very challenging investigation to
devise laboratory experiments to confirm our findings
[18].
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